Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Nat Commun ; 15(1): 2264, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480688

RESUMO

NME3 is a member of the nucleoside diphosphate kinase (NDPK) family localized on the mitochondrial outer membrane (MOM). Here, we report a role of NME3 in hypoxia-induced mitophagy dependent on its active site phosphohistidine but not the NDPK function. Mice carrying a knock-in mutation in the Nme3 gene disrupting NME3 active site histidine phosphorylation are vulnerable to ischemia/reperfusion-induced infarction and develop abnormalities in cerebellar function. Our mechanistic analysis reveals that hypoxia-induced phosphatidic acid (PA) on mitochondria is essential for mitophagy and the interaction of DRP1 with NME3. The PA binding function of MOM-localized NME3 is required for hypoxia-induced mitophagy. Further investigation demonstrates that the interaction with active NME3 prevents DRP1 susceptibility to MUL1-mediated ubiquitination, thereby allowing a sufficient amount of active DRP1 to mediate mitophagy. Furthermore, MUL1 overexpression suppresses hypoxia-induced mitophagy, which is reversed by co-expression of ubiquitin-resistant DRP1 mutant or histidine phosphorylatable NME3. Thus, the site-specific interaction with active NME3 provides DRP1 a microenvironment for stabilization to proceed the segregation process in mitophagy.


Assuntos
Dinaminas , Mitofagia , Animais , Camundongos , Dinaminas/genética , Dinaminas/metabolismo , Histidina/metabolismo , Hipóxia , Mitofagia/genética , Ubiquitinação
2.
RNA ; 30(3): 223-239, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164626

RESUMO

Mitochondria-associated RNA-binding proteins (RBPs) have emerged as key contributors to mitochondrial biogenesis and homeostasis. With few examples known, we set out to identify RBPs that regulate nuclear-encoded mitochondrial mRNAs (NEMmRNAs). Our systematic analysis of RNA targets of 150 RBPs identified RBPs with a preference for binding NEMmRNAs, including LARP4, a La RBP family member. We show that LARP4's targets are particularly enriched in mRNAs that encode respiratory chain complex proteins (RCCPs) and mitochondrial ribosome proteins (MRPs) across multiple human cell lines. Through quantitative proteomics, we demonstrate that depletion of LARP4 leads to a significant reduction in RCCP and MRP protein levels. Furthermore, we show that LARP4 depletion reduces mitochondrial function, and that LARP4 re-expression rescues this phenotype. Our findings shed light on a novel function for LARP4 as an RBP that binds to and positively regulates NEMmRNAs to promote mitochondrial respiratory function.


Assuntos
Mitocôndrias , Proteínas de Ligação a RNA , Humanos , Linhagem Celular , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
J Med Entomol ; 61(2): 318-330, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38104252

RESUMO

The current study was carried out in the seaward coastal beach environment of Al-Jubail City, Saudi Arabia, to analyze the rabbit carcass decomposition process, the succession pattern of associated ants, and their potential utility in forensic investigation. Experiments were conducted over a 4-season course (from autumn 2018 to summer 2019). A total of 9 species belonging to the 2 subfamilies, Myrmicinae and Formicinae, were recorded. The myrmicine species were Crematogaster aegyptiaca Mayr, 1862; Messor ebeninus Santschi, 1927; Messor foreli Santschi, 1923; and Monomorium abeillei Andre, 1881. The formicine species were Camponotus xerxes Forel, 1904; Cataglyphis albicans (Roger, 1859); Cataglyphis hologerseniCollingwood & Agosti, 1996; Cataglyphis viaticoides (André, 1881); and Nylanderia jaegerskioeldi (Mayr, 1904). M. abeillei was the only species recorded in all 4 seasons, while M. abeillei and C. albicans were the dominant species in summer and C. aegyptiaca and C. albicans in spring. Diversity was lowest in the autumn, with only 4 species recorded. The COI gene sequences of 5 species have been successfully deposited in the GenBank database for the first time. In total, 4 carcass decomposition stages were observed, with the longest duration in winter (13 days), the shortest in summer (11 days), and in between for both autumn and spring. Most ant species were present during both decay and dry stages, while M. abeillei, C. aegyptiaca, M. ebeninus, and C. albicans were observed in all decomposition stages. These data may indicate that ants on this coastal beach showed seasonal and geographical succession patterns that could be taken into consideration in forensic investigations.


Assuntos
Formigas , Coelhos , Animais , Arábia Saudita , Cadáver
4.
Nat Commun ; 14(1): 7791, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057326

RESUMO

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pâncreas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fibroblastos/metabolismo , Carcinogênese/patologia , Microambiente Tumoral
5.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745372

RESUMO

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.

6.
Immunity ; 56(9): 2086-2104.e8, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572655

RESUMO

The limited efficacy of immunotherapies against glioblastoma underscores the urgency of better understanding immunity in the central nervous system. We found that treatment with αCTLA-4, but not αPD-1, prolonged survival in a mouse model of mesenchymal-like glioblastoma. This effect was lost upon the depletion of CD4+ T cells but not CD8+ T cells. αCTLA-4 treatment increased frequencies of intratumoral IFNγ-producing CD4+ T cells, and IFNγ blockade negated the therapeutic impact of αCTLA-4. The anti-tumor activity of CD4+ T cells did not require tumor-intrinsic MHC-II expression but rather required conventional dendritic cells as well as MHC-II expression on microglia. CD4+ T cells interacted directly with microglia, promoting IFNγ-dependent microglia activation and phagocytosis via the AXL/MER tyrosine kinase receptors, which were necessary for tumor suppression. Thus, αCTLA-4 blockade in mesenchymal-like glioblastoma promotes a CD4+ T cell-microglia circuit wherein IFNγ triggers microglia activation and phagocytosis and microglia in turn act as antigen-presenting cells fueling the CD4+ T cell response.


Assuntos
Glioblastoma , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Antígeno CTLA-4 , Células Th1 , Microglia , Linfócitos T CD8-Positivos , Fagocitose , Células Dendríticas , Linfócitos T CD4-Positivos
7.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37221017

RESUMO

mTORC1 is the key rheostat controlling the cellular metabolic state. Of the various inputs to mTORC1, the most potent effector of intracellular nutrient status is amino acid supply. Despite an established role for MAP4K3 in promoting mTORC1 activation in the presence of amino acids, the signaling pathway by which MAP4K3 controls mTORC1 activation remains unknown. Here, we examined the process of MAP4K3 regulation of mTORC1 and found that MAP4K3 represses the LKB1-AMPK pathway to achieve robust mTORC1 activation. When we sought the regulatory link between MAP4K3 and LKB1 inhibition, we discovered that MAP4K3 physically interacts with the master nutrient regulatory factor sirtuin-1 (SIRT1) and phosphorylates SIRT1 to repress LKB1 activation. Our results reveal the existence of a novel signaling pathway linking amino acid satiety with MAP4K3-dependent suppression of SIRT1 to inactivate the repressive LKB1-AMPK pathway and thereby potently activate the mTORC1 complex to dictate the metabolic disposition of the cell.


Assuntos
Proteínas Quinases Ativadas por AMP , Sirtuína 1 , Transdução de Sinais , Aminoácidos , Alvo Mecanístico do Complexo 1 de Rapamicina
8.
IUBMB Life ; 75(4): 324-327, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36811280
9.
J Anim Ecol ; 92(2): 297-309, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35978494

RESUMO

Determining when animal populations have experienced stress in the past is fundamental to understanding how risk factors drive contemporary and future species' responses to environmental change. For insects, quantifying stress and associating it with environmental factors has been challenging due to a paucity of time-series data and because detectable population-level responses can show varying lag effects. One solution is to leverage historic entomological specimens to detect morphological proxies of stress experienced at the time stressors emerged, allowing us to more accurately determine population responses. Here we studied specimens of four bumblebee species, an invaluable group of insect pollinators, from five museums collected across Britain over the 20th century. We calculated the degree of fluctuating asymmetry (FA; random deviations from bilateral symmetry) between the right and left forewings as a potential proxy of developmental stress. We: (a) investigated whether baseline FA levels vary between species, and how this compares between the first and second half of the century; (b) determined the extent of FA change over the century in the four bumblebee species, and whether this followed a linear or nonlinear trend; (c) tested which annual climatic conditions correlated with increased FA in bumblebees. Species differed in their baseline FA, with FA being higher in the two species that have recently expanded their ranges in Britain. Overall, FA significantly increased over the century but followed a nonlinear trend, with the increase starting c. 1925. We found relatively warm and wet years were associated with higher FA. Collectively our findings show that FA in bumblebees increased over the 20th century and under weather conditions that will likely increase in frequency with climate change. By plotting FA trends and quantifying the contribution of annual climate conditions on past populations, we provide an important step towards improving our understanding of how environmental factors could impact future populations of wild beneficial insects.


Assuntos
Mudança Climática , Museus , Animais , Abelhas
10.
Gastro Hep Adv ; 1(4): 682-697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277993

RESUMO

Background and Aims: Eicosanoids, oxidized fatty acids that serve as cell-signaling molecules, have been broadly implicated in tumorigenesis. Here, we aimed to identify eicosanoids associated with pancreatic tumorigenesis and the cell types responsible for their synthesis. Methods: We profiled normal pancreas and pancreatic ductal adenocarcinoma (PDAC) in mouse models and patient samples using mass spectrometry. We interrogated RNA sequencing datasets for eicosanoid synthase or receptor expression. Findings were confirmed by immunostaining. Results: In murine models, we identified elevated levels of PGD2, prostacyclin, and thromboxanes in neoplasia while PGE2, 12-HHTre, HETEs, and HDoHEs are elevated specifically in tumors. Analysis of scRNA-seq datasets suggests that PGE2 and prostacyclins are derived from fibroblasts, PGD2 and thromboxanes from myeloid cells, and PGD2 and 5-HETE from tuft cells. In patient samples, we identified a transition from PGD2 to PGE2-producing enzymes in the epithelium during the transition to PDAC, fibroblast/tumor expression of PTGIS, and myeloid/tumor cell expression of TBXAS1. Conclusions: Our analyses identify key changes in eicosanoid species during pancreatic tumorigenesis and the cell types that contribute to their synthesis. Thromboxane and prostacyclin expression is conserved between animal models and human disease and may represent new druggable targets.

11.
Mol Cell ; 82(12): 2190-2200, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35654043

RESUMO

Protein phosphorylation is a reversible post-translational modification. Nine of the 20 natural amino acids in proteins can be phosphorylated, but most of what we know about the roles of protein phosphorylation has come from studies of serine, threonine, and tyrosine phosphorylation. Much less is understood about the phosphorylation of histidine, lysine, arginine, cysteine, aspartate, and glutamate, so-called non-canonical phosphorylations. Phosphohistidine (pHis) was discovered 60 years ago as a mitochondrial enzyme intermediate; since then, evidence for the existence of histidine kinases and phosphohistidine phosphatases has emerged, together with examples where protein function is regulated by reversible histidine phosphorylation. pHis is chemically unstable and has thus been challenging to study. However, the recent development of tools for studying pHis has accelerated our understanding of the multifaceted functions of histidine phosphorylation, revealing a large number of proteins that are phosphorylated on histidine and implicating pHis in a wide range of cellular processes.


Assuntos
Histidina , Proteínas , Histidina/análogos & derivados , Histidina/química , Histidina/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Proteínas/metabolismo
13.
Acta Mater Med ; 1(2): 193-196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37200937

RESUMO

The classical phosphatidylinositol 3-kinases (PI3Ks) are heterodimers of p110 and p85. PIK3CA, the gene encoding the catalytic p110α subunit, is one of the most frequently mutated oncogenes in human cancers with hot spot mutations occurring in the helical domain or in the kinase domain. Tumors with these two types of PIK3CA mutations show overlapping yet distinct phenotypes; however, the underlying mechanisms remain unclear. In a recent publication [1], Hao et al revealed exciting findings about the PI3K p85ß regulatory subunit in promoting PIK3CA helical domain mutation-driven cancer progression. The authors found that p85ß disassociated from the PI3K complex and translocated into the nucleus only in cancer cells harboring PIK3CA helical domain mutations. Disrupting nuclear localization of p85ß suppressed mouse tumor growth of cancer cells with PIK3CA helical domain mutation. Mechanistically, they elegantly showed that nuclear p85ß recruited the deubiquitinase USP7 to stabilize the histone methyltransferases EZH1/2, leading to enhanced H3K27 trimethylation and gene transcription. Combining an EZH inhibitor with a PI3K inhibitor specifically resulted in regression of mouse xenograft tumors with PIK3CA helical domain mutations. These findings illustrate a previously uncharacterized function of p85ß in tumor development and suggest an effective approach to target tumors with PIK3CA helical mutations.

15.
Biochem J ; 478(19): 3575-3596, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624072

RESUMO

Histidine phosphorylation is an important and ubiquitous post-translational modification. Histidine undergoes phosphorylation on either of the nitrogens in its imidazole side chain, giving rise to 1- and 3- phosphohistidine (pHis) isomers, each having a phosphoramidate linkage that is labile at high temperatures and low pH, in contrast with stable phosphomonoester protein modifications. While all organisms routinely use pHis as an enzyme intermediate, prokaryotes, lower eukaryotes and plants also use it for signal transduction. However, research to uncover additional roles for pHis in higher eukaryotes is still at a nascent stage. Since the discovery of pHis in 1962, progress in this field has been relatively slow, in part due to a lack of the tools and techniques necessary to study this labile modification. However, in the past ten years the development of phosphoproteomic techniques to detect phosphohistidine (pHis), and methods to synthesize stable pHis analogues, which enabled the development of anti-phosphohistidine (pHis) antibodies, have accelerated our understanding. Recent studies that employed anti-pHis antibodies and other advanced techniques have contributed to a rapid expansion in our knowledge of histidine phosphorylation. In this review, we examine the varied roles of pHis-containing proteins from a chemical and structural perspective, and present an overview of recent developments in pHis proteomics and antibody development.


Assuntos
Histidina/análogos & derivados , Proteoma/química , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Animais , Anticorpos/imunologia , Biocatálise , Domínio Catalítico , Histidina/química , Histidina/imunologia , Histidina/metabolismo , Humanos , Isomerismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteômica/métodos
16.
Cancer Cell ; 39(6): 779-792.e11, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34087162

RESUMO

The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and model systems, combined with functional experiments. We demonstrate that macrophages induce a transition of glioblastoma cells into mesenchymal-like (MES-like) states. This effect is mediated, both in vitro and in vivo, by macrophage-derived oncostatin M (OSM) that interacts with its receptors (OSMR or LIFR) in complex with GP130 on glioblastoma cells and activates STAT3. We show that MES-like glioblastoma states are also associated with increased expression of a mesenchymal program in macrophages and with increased cytotoxicity of T cells, highlighting extensive alterations of the immune microenvironment with potential therapeutic implications.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioblastoma/imunologia , Glioblastoma/patologia , Linfócitos T/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Neoplasias Encefálicas/genética , Células Cultivadas , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Citotoxicidade Imunológica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oncostatina M/metabolismo , Subunidade beta de Receptor de Oncostatina M/genética , Subunidade beta de Receptor de Oncostatina M/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/patologia
17.
Commun Biol ; 4(1): 452, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846527

RESUMO

Leukemia inhibitory factor (LIF), a cytokine secreted by stromal myofibroblasts and tumor cells, has recently been highlighted to promote tumor progression in pancreatic and other cancers through KRAS-driven cell signaling. We engineered a high affinity soluble human LIF receptor (LIFR) decoy that sequesters human LIF and inhibits its signaling as a therapeutic strategy. This engineered 'ligand trap', fused to an antibody Fc-domain, has ~50-fold increased affinity (~20 pM) and improved LIF inhibition compared to wild-type LIFR-Fc, potently blocks LIF-mediated effects in pancreatic cancer cells, and slows the growth of pancreatic cancer xenograft tumors. These results, and the lack of apparent toxicity observed in animal models, further highlights ligand traps as a promising therapeutic strategy for cancer treatment.


Assuntos
Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/antagonistas & inibidores , Neoplasias Pancreáticas/terapia , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Ligantes , Engenharia de Proteínas
18.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547238

RESUMO

In 2015, monoclonal antibodies (mAbs) that selectively recognize the 1-pHis or 3-pHis isoforms of phosphohistidine were developed by immunizing rabbits with degenerate Ala/Gly peptides containing the nonhydrolyzable phosphohistidine (pHis) analog- phosphotriazolylalanine (pTza). Here, we report structures of five rabbit mAbs bound to cognate pTza peptides: SC1-1 and SC50-3 that recognize 1-pHis, and their 3-pHis-specific counterparts, SC39-4, SC44-8, and SC56-2. These cocrystal structures provide insights into the binding modes of the pTza phosphate group that are distinct for the 1- and 3-pHis mAbs with the selectivity arising from specific contacts with the phosphate group and triazolyl ring. The mode of phosphate recognition in the 3-pHis mAbs recapitulates the Walker A motif, as present in kinases. The complementarity-determining regions (CDRs) of four of the Fabs interact with the peptide backbone rather than peptide side chains, thus conferring sequence independence, whereas SC44-8 shows a proclivity for binding a GpHAGA motif mediated by a sterically complementary CDRL3 loop. Specific hydrogen bonding with the triazolyl ring precludes recognition of pTyr and other phosphoamino acids by these mAbs. Kinetic binding experiments reveal that the affinity of pHis mAbs for pHis and pTza peptides is submicromolar. Bound pHis mAbs also shield the pHis peptides from rapid dephosphorylation. The epitope-paratope interactions illustrate how these anti-pHis antibodies are useful for a wide range of research techniques and this structural information can be utilized to improve the specificity and affinity of these antibodies toward a variety of pHis substrates to understand the role of histidine phosphorylation in healthy and diseased states.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Histidina/análogos & derivados , Peptídeos/química , Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Reações Cruzadas/imunologia , Histidina/química , Histidina/imunologia , Fragmentos Fab das Imunoglobulinas/química , Isomerismo , Cinética , Fosfatos/metabolismo , Coelhos , Relação Estrutura-Atividade
19.
Cell Discov ; 7(1): 6, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33495455

RESUMO

Ubiquitylation is a critical post-translational modification that controls a wide variety of processes in eukaryotes. Ubiquitin chains of different topologies are specialized for different cellular functions and control the stability, activity, interaction properties, and localization of many different proteins. Recent work has highlighted a role for branched ubiquitin chains in the regulation of cell signaling and protein degradation pathways. Similar to their unbranched counterparts, branched ubiquitin chains are remarkably diverse in terms of their chemical linkages, structures, and the biological information they transmit. In this review, we discuss emerging themes related to the architecture, synthesis, and functions of branched ubiquitin chains. We also describe methodologies that have recently been developed to identify and decode the functions of these branched polymers.

20.
Nat Commun ; 12(1): 71, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397984

RESUMO

Signaling complexes are often organized in a spatiotemporal manner and on a minute timescale. Proximity labeling based on engineered ascorbate peroxidase APEX2 pioneered in situ capture of spatiotemporal membrane protein complexes in living cells, but its application to cytosolic proteins remains limited due to the high labeling background. Here, we develop proximity labeling probes with increased labeling selectivity. These probes, in combination with label-free quantitative proteomics, allow exploring cytosolic protein assemblies such as phosphotyrosine-mediated protein complexes formed in response to minute-scale EGF stimulation. As proof-of-concept, we systematically profile the spatiotemporal interactome of the EGFR signaling component STS1. For STS1 core complexes, our proximity proteomics approach shows comparable performance to affinity purification-mass spectrometry-based temporal interactome profiling, while also capturing additional-especially endosomally-located-protein complexes. In summary, we provide a generic approach for exploring the interactome of mobile cytosolic proteins in living cells at a temporal resolution of minutes.


Assuntos
Citosol/metabolismo , Proteômica , Transdução de Sinais , Biotina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células HeLa , Humanos , Fenóis , Mapeamento de Interação de Proteínas , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...